Phylogenetic structure of soil bacterial communities predicts ecosystem functioning.
نویسندگان
چکیده
Quantifying diversity with phylogeny-informed metrics helps understand the effects of diversity on ecosystem functioning (EF). The sign of these effects remains controversial because phylogenetic diversity and taxonomic identity may interactively influence EF. Positive relationships, traditionally attributed to complementarity effects, seem unimportant in natural soil bacterial communities. Negative relationships could be attributed to fitness differences leading to the overrepresentation of few productive clades, a mechanism recently invoked to assemble soil bacteria communities. We tested in two ecosystems contrasting in terms of environmental heterogeneity whether two metrics of phylogenetic community structure, a simpler measure of phylogenetic diversity (NRI) and a more complex metric incorporating taxonomic identity (PCPS), correctly predict microbially mediated EF. We show that the relationship between phylogenetic diversity and EF depends on the taxonomic identity of the main coexisting lineages. Phylogenetic diversity was negatively related to EF in soils where a marked fertility gradient exists and a single and productive clade (Proteobacteria) outcompete other clades in the most fertile plots. However, phylogenetic diversity was unrelated to EF in soils where the fertility gradient is less marked and Proteobacteria coexist with other abundant lineages. Including the taxonomic identity of bacterial lineages in metrics of phylogenetic community structure allows the prediction of EF in both ecosystems.
منابع مشابه
Soil bacterial community succession during long-term ecosystem development.
The physicochemical and biological gradients of soil and vegetative succession along the Franz Josef chrono sequence in New Zealand were used to test whether bacterial communities show patterns of change associated with long-term ecosystem development. Pyrosequencing was conducted on soil-derived 16S rRNA genes at nine stages of ecosystem progression and retrogression, ranging in age from 60 to...
متن کاملConsistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems.
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. Although the effects of increased N inputs on plant communities have been reasonably well studied, few comparable studies have examined impacts on whole soil bacterial communities, though they play critical roles in ecosystem functioning. We sampled soils from two long-term ecologica...
متن کاملPhylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2
UNLABELLED Understanding the interactions among different species and their responses to environmental changes, such as elevated atmospheric concentrations of CO(2), is a central goal in ecology but is poorly understood in microbial ecology. Here we describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological networks using metagenomic sequ...
متن کاملMultiple dimensions of bacterial diversity unrelated to functioning, stability and multifunctionality
Bacteria are essential for many ecosystem services but our understanding of factors controlling their functioning is incomplete. While biodiversity has been identified as an important driver of ecosystem processes in macrobiotic communities, we know much less about bacterial communities. Due to the high diversity of bacterial communities, high functional redundancy is commonly proposed as expla...
متن کاملDistinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau
Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 91 5 شماره
صفحات -
تاریخ انتشار 2015